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Abstract— The sense of touch, being the earliest sensory
system to develop in a human body [1], plays a critical part of
our daily interaction with the environment. In order to success-
fully complete a task, many manipulation interactions require
incorporating haptic feedback. However, manually designing a
feedback mechanism can be extremely challenging. In this work,
we consider manipulation tasks that need to incorporate tactile
sensor feedback in order to modify a provided nominal plan. To
incorporate partial observation, we present a new framework
that models the task as a partially observable Markov decision
process (POMDP) and learns an appropriate representation of
haptic feedback which can serve as the state for a POMDP
model. The model, that is parametrized by deep recurrent
neural networks, utilizes variational Bayes methods to optimize
the approximate posterior. Finally, we build on deep Q-learning
to be able to select the optimal action in each state without
access to a simulator. We test our model on a PR2 robot for
multiple tasks of turning a knob until it clicks.

I. INTRODUCTION

Many tasks in human environments that we do without
much effort require more than just visual observation. Very
often they require incorporating the sense of touch to com-
plete the task. For example, consider the task of turning a
knob that needs to be rotated until it clicks, like the one
in Figure 1. The robot could observe the consequence of
its action if any visible changes occur, but such clicks can
often only be directly observed through the fingers. Many
of the objects that surround us are explicitly designed with
feedback — one of the key interaction design principles —
otherwise “one is always wondering whether anything has
happened” [2].

Recently, there has been a lot of progress in making robots
understand and act based on images [3], [4], [5] and point-
clouds [6]. A robot can definitely gain a lot of information
from visual sensors, including a nominal trajectory plan for
a task [6]. However, when the robot is manipulating a small
object or once the robot starts interacting with small parts
of appliances, self-occlusion by its own arms and its end-
effectors limits the use of the visual information.

However, building an algorithm that can examine haptic
properties and incorporate such information to influence a
motion is very challenging for multiple reasons. First, haptic
feedback is a dynamic response that is dependent on the
action the robot has taken on the object as well as internal
states and properties of the object. Second, every haptic
sensor produces a vastly different raw sensor signal.

Moreover, compared to the rich information that can be
extracted about a current state of the task from few images
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Fig. 1: Haptic feedback from a tactile sensor being used
to modify a nominal plan of manipulation. Our frame-
work learns an appropriate representation (embedding space)
which in turn is used to learn to find optimal control.

(e.g. position and velocity information of an end-effector and
an object [5], [3]), a short window of haptic sensor signal
is merely a partial consequence of the interaction and of
the changes in an unobservable internal mechanism. It also
suffers from perceptual aliasing — i.e. many segments of a
haptic signal at different points of interaction can produce
a very similar signal. These challenges make it difficult to
design an algorithm that can incorporate information from
haptic modalities (in our case, tactile sensors).

In this work, we introduce a framework that can learn to
represent haptic feedback for tasks requiring incorporation of
a haptic signal. Since a haptic signal only provides a partial
observation, we model the task using a partially observable
Markov decision process (POMDP). However, since we do
not know of definition of states for a POMDP, we first
learn an appropriate representation from a haptic signal to
be used as continuous states for a POMDP. To overcome
the intractability in computing the posterior, we employ a
variational Bayesian method, with a deep recurrent neural
network, that maximizes lower bound of likelihood of the
training data.

Using a learned representation of the interaction with
feedback, we build on deep Q-learning [5] to identify an
appropriate phase of the action from a provided nominal
plan. Unlike most other applications of successful reinforce-



ment learning [5], [7], the biggest challenge is a lack of a
robotics simulation software that can generate realistic haptic
signals for a robot to safely simulate and explore various
combinations of states with different actions.

To validate our approach, we collect a large number
of sequences of haptic feedback along with their executed
motion for the task of ‘turning a knob until it clicks’ on
objects of various shapes. We empirically show on a PR2
robot that we can modify a nominal plan and successfully
accomplish the task using the learned models, incorporating
tactile sensor feedback on the fingertips of the robot. In
summary, the key contributions of this work are:
� an algorithm which learns task relevant representation

of haptic feedback
� a framework for modifying a nominal manipulation plan

for interactions that involves haptic feedback
� an algorithm for learning optimal actions with limited

data without simulator

II. RELATED WORK

Haptics. Haptic sensors mounted on robots enable many
different interesting applications. Using force and tactile
input, a food item can be classified with characteristics which
map to appropriate class of motions [8]. Haptic adjectives
such as ‘sticky’ and ‘bumpy’ can be learned with biomimetic
tactile sensors [9]. Whole-arm tactile sensing allows fast
reaching in dense clutter. We focus on tasks with a nominal
plan (e.g. [6]) but requires incorporating haptic (tactile)
sensors to modify execution length of each phase of actions.

For closed-loop control of robot, there is a long history of
using different feedback mechanisms to correct the behavior
[10]. One of the common approaches that involves contact
relies on stiffness control, which uses the pose of an end-
effector as the error to adjust applied force [11], [12]. The
robot can even self-tune its parameters for its controllers
[13]. A robot also uses the error in predicted pose for force
trajectories [14] and use vision for visual servoing [15].

Haptic sensors have also been used to provide feedback. A
human operator with a haptic interface device can teleoperate
a robot remotely [16]. Features extracted from tactile sensors
can serve as feedback to planners to slide and roll objects
[17]. [18] uses tactile sensor to detect success and failure of
manipulation task to improve its policy.

Partial Observability. A POMDP is a framework for a
robot to plan its actions under uncertainty given that the
states are often only obtained through noisy sensors [19].
The framework has been successfully used for many tasks
including navigation and grasping [20], [21]. Using wrist
force/torque sensors, hierarchical POMDPs help a robot
localize certain points on a table [22]. While for some
problems [20], states can be defined as continuous robot
configuration space, it is unclear what the ideal state space
representation is for many complex manipulation tasks.

When the knowledge about the environment or states is
not sufficient, [23] use a fully connected DBN for learning
factored representation online, while [24] employ a two step
method of first learning optimal decoder then learning to

encode. While many of these work have access to a good
environment model, or is able to simulate environment where
it can learn online, we cannot explore or simulate to learn
online. Also, the reward function is not available. For training
purposes, we perform privileged learning [25] by providing
an expert reward label only during the training phase.

Representation Learning. Deep learning has recently
vastly improved the performance of many related fields such
as compute vision (e.g. [26]) and speech recognition (e.g.
[27]). In robotics, it has helped robots to better classify
haptic adjectives by combining images with haptic signals
[28], predict traversability from long-range vision [29], and
classify terrains based on acoustics [30].

For controlling robots online, a deep auto-encoder can
learn lower-dimensional embedding from images and model-
predictive-control (MPC) is used for optimal control [31].
DeepMPC [14] predicts its future end-effector position with
a recurrent network and computes an appropriate amount of
force. Convolutional neural network can be trained to directly
map images to motor torques [3], [32]. As mentioned earlier,
we only take input of haptic signals, which suffers from
perceptual aliasing, and contains a lot less information in
a single timestep compared to RGB images.

Recently developed variational Bayesian approach [33],
[34], combined with a neural network, introduces a recogni-
tion model to approximate intractable true posterior. Embed-
to-Control [4] learns embedding from images and transition
between latent states representing unknown dynamical sys-
tem. Deep Kalman Filter [35] learns very similar temporal
model based on Kalman Filter but is used for counterfactual
inference on electronic health records.

Reinforcement learning (RL), also combined with a neural
network, has recently learned to play computer games by
looking at pixels [5], [36]. Applying standard RL to a
robotic manipulation task, however, is challenging due to
lack of suitable state space representation [32]. Also, most
RL techniques rely on trial and error [37] with the ability
to try different actions from different states and observe
reward and state transition. However, for many of the robotic
manipulation tasks that involve physical contact with the
environment, it is too risky to let an algorithm try different
actions, and reward is not trivial without instrumentation of
the environment for many tasks. In this work, the robot learns
to represent haptic feedback and find optimal control from
limited amount of haptic sequences despite lack of good
robotic simulator for haptic signal.

III. OUR APPROACH

Our goal is to build a framework that allows robots to
represent and reason about haptic signals generated by its
interaction with an environment.

Imagine you were asked to turn off the hot plate in
Figure 1 by rotating the knob until it clicks. In order to
do so, you would start by rotating the knob clockwise or
counterclockwise until it clicks. If it doesn’t click and if
you feel the wall, you would start to rotate it in the opposite
direction. And, in order to confirm that you have successfully
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Fig. 2: Framework Overview. We model the task that requires incorporation of tactile feedback in a partially observable
MDP (a) which its transition and emission functions are parametrized by neural networks (b). To find an appropriate
representation of states for the POMDP, we approximate the posterior with a Deep Recurrent Recognition Network (c),
consisting of two LSTM (square blocks) recurrent networks. Deep Q-Network (d), consisting of two fully connected layers,
utilizes a learned representation from (c) and a learned transition model from (a) to train Deep Q-Network (d).

completed the task or hit the wall, you would use your sense
of touch on your finger to feel a click. There could also be
a sound of a click as well as other observable consequences,
but you would not feel very confident about the click in the
absence of haptic feedback.

However, such haptic signal itself does not contain suffi-
cient information for a robot to directly act on. It is unclear
what is the best representation for a state of the task, whether
it should only be dependent on states of internal mechanisms
of the object (which are unknown) or it should incorporate
information about the interaction as well. The haptic signal
is merely a noisy partial observation of latent states of the
environment, influenced by many factors such as a type of
interaction that is involved and a type of grasp by the robot.

To learn an appropriate representation of the state, we first
define our manipulation task as a POMDP model. However,
posterior inference on such latent state from haptic feedback
is intractable. In order to approximate the posterior, we
employ variational Bayes methods to jointly learn model
parameters for both a POMDP and an approximate poste-
rior model, each parametrized by a deep recurrent neural
network.

Another big challenge is the limited opportunity to explore
with different policies to fine-tune the model, unlike many
other applications that employs POMDP or reinforcement
learning. Real physical interactions involving contact are too
risky for both the robot and the environment without lots
of extra safety measures. Another common solution is to
explore in a simulated environment; however, none of the
available robot simulators, as far as we are aware, are capable
of generating realistic feedback for objects of our interest.

Instead, we learn offline from previous experiments by uti-
lizing a learned haptic representation along with its transition
model to explore offline and learn Q-function.

A. Problem Formulation
Given a sequence of haptic signals (~o = o1; :::; ot) up

to current time frame t along with a sequence of actions
taken (~a = a1; :::; at), our goal is to output a sequence of

speaker fan stirrer 

Fig. 3: Samples of haptic signals from three different objects
with a PR2 fingertip tactile sensor. Notice a large variation
in feedback produced by what humans identify as a ‘click’.

appropriate state representations (~s = s1; :::; st) such that
we can take an optimal next action at+1 inferred from the
current state st.

B. Generative Model
We formulate the task that requires haptic feedback as

a POMDP model, defined as (S;A; T;R;O). S represents
a set of states, A represents a set of actions, T represents
a state transition function, R represents a reward function,
and O represents an observation probability function. Fig. 2a
represents a graphical model representation of a POMDP
model and all notations are summarized in Table I.

Among the required definitions of a POMDP model, most
importantly, state S and its representation are unknown.
Thus, all functions T;R;O that rely on states S are also
not available.

We assume that all transition and emission probabilities
are distributed as Gaussian distributions; however, they can
take any appropriate distribution for the application. Mean
and variance of each distribution are defined as a function
with input as parent nodes in the graphical model (Fig. 2a):

s1 � N (0; I)

st � N (fs�(st�1; at); fs�(st�1; at)
2I)

ot � N (fo�(st); fo�
(st)

2I)

rt � N (fr�(st); fr�(st)
2I)

We parametrize each of these functions as a neural network.
Fig. 2b shows a two layer network for parametrization of
the transition function, and emission networks take a similar
structure. The parameters of these networks form the param-
eters of the generative model � = fs�; s�; o�; o�; r�; r�g.


