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Abstract— Many tasks in human environments require per-
forming a sequence of navigation and manipulation steps
involving objects. In unstructured human environments, the
location and configuration of the objects involved often change
in unpredictable ways. This requires a high-level planning
strategy that is robust and flexible in an uncertain environment.
We propose a novel dynamic planning strategy, which can be
trained from a set of example sequences. High level tasks are
expressed as a sequence of primitive actions or controllers (with
appropriate parameters). Our score function, based on Markov
Random Field (MRF), captures the relations between environ-
ment, controllers, and their arguments. By expressing the envi-
ronment using sets of attributes, the approach generalizes well
to unseen scenarios. We train the parameters of our MRF using
a maximum margin learning method. We provide a detailed
empirical validation of our overall framework demonstrating
successful plan strategies for a variety of tasks.1

I. INTRODUCTION

When interacting with a robot, users often under-specify
the tasks to be performed. For example in Figure 5, when
asked to pour something, the robot has to infer which cup
to pour into and a complete sequence of the navigation and
manipulation steps—moving close, grasping, placing, and so
on.

This sequence not only changes with the task, but also
with the perceived state of the environment. As an example,
consider the task of a robot fetching a magazine from a desk.
The method to perform this task varies depending on several
properties of the environment: for example, the robot’s
relative distance from the magazine, the robot’s relative
orientation, the thickness of the magazine, and the presence
or the absence of other items on top of the magazine. If
the magazine is very thin, the robot may have to slide the
magazine to the side of the table to pick it up. If there is
a mug sitting on top of the magazine, it would have to
be moved prior to the magazine being picked up. Thus,
especially when the details of the manipulation task are
under-specified, the success of executing the task depends
on the ability to detect the object and on the ability to
sequence the set of primitives (navigation and manipulation
controllers) in various ways in response to the environment.

In recent years, there have been significant developments
in building low-level controllers for robots [34] as well as
in perceptual tasks such as object detection from sensor data
[20, 11, 35]. In this work, our goal is to, given the environ-
ment and the task, enable robots to sequence the navigation
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Fig. 1. Figure showing our Kodiak PR2 in a kitchen with different
objects labeled with attributes. To accomplish the under-defined task of
pour(obj17), it has to first find the mug (obj13) and carry it to the table
(obj05) since it is dangerous to pour liquid in a tight shelf. Once the mug
is on the table, it has to bring the liquid by the container (obj19) and then
finally pour it into the mug.

and manipulation primitives. Manually sequencing instruc-
tions is not scalable because of the large variety of tasks and
situations that can arise in unstructured environments.

In this work, we take an attribute-based representation of
the environment, where each object is represented with a set
of attributes, such as their size, shape-related information,
presence of handles, and so forth. For a given task, there
are often multiple objects with similar functions that can be
used to accomplish the task, and humans can naturally reason
and choose the most suitable object for the given task [17].
Our model, based on attribute representation of objects, is
similarly capable of choosing the most suitable object for
the given task among many objects in the environment.

We take a dynamic planning approach to the problem
of synthesizing, in the right order, the suitable primitive
controllers. The best primitive to execute at each discrete
time step is based on a score function that represents the
appropriateness of a particular primitive for the current state
of the environment. Conceptually, a dynamic plan consists
of a loop containing a sequence of conditional statements
each with an associated primitive controller or action. If
the current environment matches the conditions of one of



the conditional statements, the corresponding primitive con-
troller is executed, bringing the robot one step closer to
completing the overall task (example in Section III). We
will show how to generalize sequencing of primitives to
make them more flexible and robust, by switching to an
attribute-based representation. We then show how to unroll
the loop into a graph-based representation, isomorphic to a
Markov Random Field. We then train the parameters of the
model by maximum margin learning method using a dataset
comprising many examples of sequences.

We evaluated our model on 127 controller sequences for
five under-specified manipulation tasks generated from 13
environments using 7 primitives. We show that our model
can predict suitable primitives to be executed with the correct
arguments in most settings. Furthermore, we show that, for
five high-level tasks, our algorithm was able to correctly
sequence 70% of the sequences in different environments.

The main contributions of this paper are:
• using an attribute-based representation of the environ-

ment for task planning,
• inferring the sequence of steps where the goals are

under-specified and have to be inferred from the context,
• a graph-based representation of a dynamic plan by

unrolling the loop into a Markov Random Field.

II. RELATED WORK

There is a large body of work in task planning across
various communities. We describe some of them in the
following categories.
Manual Controller Sequencing. Many works manually
sequence different types of controllers to accomplish specific
types of tasks. Bollini et al. [4] develop an end-to-end system
which can find ingredients on a tabletop and mix them
uniformly to bake cookies. Others used pre-programmed
sequences for tea serving and carrying humans in healthcare
robotics [25, 24]. These approaches however cannot scale
to large number of tasks when each task requires its own
complicated rules for sequencing controllers and assumes a
controlled environment, which is very different from actual
human households, where objects of interest can appear any-
where in the environment with a variety of similar objects.

Beetz et al. [2] retrieve a sequence for “making a pancake”
from online websites but assumes an environment with
correct labels and a single choice of object for the task.
Human experts can generate finite state machines for robots
but this again requires explicit labels (e.g. AR tags) [27]. Our
work addresses these problems by representing each object
in the environment as a set of attributes which is more robust
than labeling the individual object [7, 6, 22]. In our recent
work [23], we learn a sequence given a natural language
instruction and object labels, where the focus is to learn the
grounding of the natural language into the environment.
Learning Activities from Videos. In the area of computer
vision, several works [37, 38, 32, 19] consider modeling the
sequence of activities that humans perform. These works are
complementary to ours because our problem is to infer the
sequence of controllers and not to label the videos.

Symbolic Planning. Planning problems often rely on sym-
bolic representation of entities as well as their relations. This
has often been formalized as a deduction [9] or satisfiability
problem [16]. A plan can also be generated hierarchically by
first planning abstractly, and then generating a detailed plan
recursively [15]. Such approaches can generate a sequence of
controllers that can be proven to be correct [14, 3]. Symbolic
planners however require encoding every precondition and
effect of each operation, which will not scale in human
environments where there are large variations. Such planners
also require domain description for each planning domain
including the types of each object (e.g., pallet crate - surface,
hoist surface - locatable) as well as any relations (e.g., on
x:crate y:surface, available x:hoist). The preconditions and
effects can be learned directly from examples of recorded
plans [36, 39] but this method suffers when there is noise in
the data [39], and also suffers from the difficulty of modeling
real world situations with the PDDL representation [36].

Such STRIPS-style representation also restricts the en-
vironment to be represented with explicit labels. Though
there is a substantial body of work on labeling human
environments [20, 21], it still remains a challenging task.
A more reliable way of representing an environment is
representing through attributes [7, 6]. An attribute-based
representation even allows classification of object classes that
are not present in the training data [22]. Similarly, in our
work, we represent the environment as a set of attributes,
allowing the robot to search for objects with the most suitable
attributes rather than looking for a specific object label.
Predicting Sequences. Predicting sequences has mostly been
studied in a Markov Decision Process framework, which
finds an optimal policy given the reward for each state.
Because the reward function cannot be easily specified
in many applications, inverse reinforcement learning (IRL)
learns the reward function from an expert’s policy [26].
IRL is extended to Apprenticeship Learning based on the
assumption that the expert tries to optimize an unknown
reward function [1]. Most similar to our work, the Max-
Margin Planning frames imitation learning as a structured
max-margin learning problem [28]. However, this has only
been applied to problems such as 2D path planning, grasp
prediction and footstep prediction [29], which have much
smaller and clearer sets of states and actions compared to
our problem of sequencing different controllers. Co-Active
Learning for manipulation path planning [10], where user
preferences are learned from weak incremental feedback,
does not directly apply to sequencing different controllers.

Both the model-based and model-free methods evaluate
state-action pairs. When it is not possible to have knowledge
about all possible or subsequent states (full backup), they
can rely on sample backup which still requires sufficient
sample to be drawn from the state space [8]. However, when
lots of robot-object interactions are involved, highly accurate
and reliable physics-based robotic simulation is required
along with reliable implementation of each manipulation
controllers. Note that each of the manipulation primitives
such as grasping are still not fully solved problems. For
example, consider the scenario where the robot is grasping



the edge of the table and was given the instruction of
follow traj pour(table,shelf). It is unclear what
should occur in the environment and becomes challenging to
have reliable simulation of actions. Thus, in the context of
reinforcement learning, we take a maximum margin based
approach to learning the weight for wTφ(s, a) such that it
maximizes the number of states where the expert outper-
forms other policies, and chooses the action that maximizes
wTφ(s, a) at each time step. The key in our work is repre-
senting task planning as a graph-based model and designing
a score function that uses attribute-based representation of
environment for under-specified tasks.

III. OUR APPROACH

We refer to a sequence of primitives (low-level navigation
and manipulation controllers) as a program. To model the
sequencing of primitives, we first represent each object in
the environment with a set of attributes as described in
Section IV-B. In order to make programs generalizable,
primitives should have the following two properties. First,
each primitive should specialize in an atomic operation such
as moving close, pulling, grasping, and releasing. Second, a
primitive should not be specific to a single high-level task.
By limiting the role of each primitive and keeping it general,
many different manipulation tasks can be accomplished with
the same small set of primitives, and our approach becomes
easily adaptable to different robots by providing implemen-
tation of primitives on the new robot.

For illustration, we write a program for “throw garbage
away” in Program 1. Most tasks could be written in such a
format, where there are many if statements inside the loop.
However, even for a simple “throw garbage away” task, the
program is quite complex. Writing down all the rules that
can account for the many different scenarios that can arise
in a human environment would be quite challenging.

Program 1 “throw garbage away.”
Input: environment e, trash a1
gc = find garbage can(e)
repeat

if a1 is in hand & gc is close then
release(a1)

else if a1 is in hand & far from gc then
move close(gc)

else if a1 is close & a1 not in hand
& nothing on top of a1 then

grasp(a1)
...

else if a1 is far then
move close(a1)

end if
until a1 inside gc

Program 1 is an example of what is commonly referred
to as reactive or dynamic planning [31, 18]. In traditional
deliberative planning, a planning algorithm synthesizes a
sequence of steps that starts from the given state and reaches
the given goal state. Although current symbolic planners can
find optimal plan sequences consisting of hundreds of steps,
such long sequences often break down because of unexpected
events during the execution. A dynamic plan provides a much

more robust alternative. At each step, the current state of the
environment is considered and the next appropriate action
is selected by one of the conditional statements in the main
loop. A well-constructed dynamic plan will identify the next
step required to bring the robot closer to the overall goal in
any possible world state. In complex domains, dynamic plans
may become too complicated. However, we are considering
basic human activities, such as following a recipe, where
dynamic plans are generally quite compact and can effec-
tively lead the robot to the goal state. Moreover, as we will
demonstrate, we can learn the dynamic plan from observing
a series of action sequences in related environments.

In order to make our approach more general, we introduce
a feature based representation for the conditions of if
statements. We can extract some features from both the
environment and the action that will be executed in the
body of if statement. With extracted features φ and some
weight vector w for each if statement, the same conditional
statements can be written as wTφ, since the environment will
always contain the rationale for executing certain primitive.
Such a feature-based approach allows us to re-write Program
1 in the form of Program 2.

Program 2 “throw garbage away.”
Input: environment e, trash a1
gc = find garbage can(e)
repeat
et = current environment
if wT1 φ(et,release(a1)) > 0 then

release(a1)
else if wT2 φ(et,move close(gc)) > 0 then

move close(gc)
...

else if wTnφ(et,move close(a1)) > 0 then
move close(a1)

end if
until a1 inside gc

Now all the if statements have the same form, where
the same primitive along with same arguments are used in
both the condition as well as the body of the if statement.
We can therefore reduce all if statements inside the loop
further down to a simple line which depends only on a single
weight vector and a single joint feature map, as shown in
Program 3, for finding the most suitable pair of primitive p̂t
and its arguments (â1,t, â2,t).

Program 3 “throw garbage away.”
Input: environment e, trash ga1
repeat
et = current environment
(p̂t, â1,t, â2,t) := arg max

pt∈P,a1,t,a2,t∈E
wTφ(et, pt(a1,t, a2,t))

execute p̂t(â1,t, â2,t)
until p̂t = done

The approach taken in Program 3 also allowed removing
the function find garbage can(e). Both Program 1 and
Program 2 require find garbage can(e) which depends on
semantic labeling of each object in the environment. The
attributes of objects will allow the program to infer which
object is a garbage can without explicit encoding.



Program 3 provides a generic representation of a dynamic
plan. We will now discuss an approach to learning a set of
weights. To do so, we will employ a graph-like representation
obtained by “unrolling” the loop representing discrete time
steps by different layers. We will obtain a representation that
is isomorphic to a Markov Random Field (MRF) and will
use a maximum margin based approach to training the weight
vector. Our MRF encodes the relations between the environ-
ment, primitive and its arguments. Our empirical results show
that such a framework is effectively trainable with a relatively
small set of example sequences. Our feature-based dynamic
plan formulation therefore offers an effective and general
representation to learn and generalize from action sequences,
accomplishing high-level tasks in a dynamic environment.

IV. MODEL FORMULATION

We are given a set of possible primitives P (navigation and
manipulation controllers) to work with (see Section V) and
an environment E represented by a set of attributes. Using
these primitives, the robot has to accomplish a manipulation
task g ∈ T . The manipulation task g is followed by the
arguments ga1, ga2 ∈ E which give a specification of the
task. For example, the program “throw garbage away” would
have a single argument which would be the object id of the
object that needs to be thrown away.

At each time step t (i.e., at each iteration of the loop
in Program 3), our environment et will dynamically change,
and its relations with the primitive is represented with a joint
set of features. These features include information about the
physical and semantic properties of the objects as well as
information about their locations in the environment.

Now our goal is to predict the best primitive pt ∈ P to
execute at each discrete time step, along with its arguments:
pt(a1,t, a2,t). We will do so by designing a score function
S(·) that represents the correctness of executing a primitive
in the current environment for a task.

S(g(ga1, ga2), et,pt(a1,t, a2,t)) =

wTφ(g(ga1, ga2), et, pt(a1,t, a2,t))

In order to have a parsimonious representation, we de-
compose our score function using a model isomorphic to
a Markov Random Field (MRF), shown in Figure 2. This
allows us to capture the dependency between primitives,
their arguments, and environments which are represented by
set of attributes. In the figure, the top node represents the
given task and its arguments (g, ga1, ga2). The second layer
from the top represents the sequence of primitives, and the
layer below represents the arguments associated with each
primitive. And, the bottom node represents the environment
which is represented with set of attributes. Note that we
also take into account the previous two primitives in the
past, together with their arguments: pt−1(a1,t−1, a2,t−1) and
pt−2(a1,t−2, a2,t−2).

Now the decomposed score function is:

S = Sae︸︷︷︸
args-env

+

prim-task︷︸︸︷
Spt +Saet︸︷︷︸

args-env-task

+

prim-args-env︷︸︸︷
Spae +Sppt︸︷︷︸

prim-prim(prev)-task

+

prim-args-args(prev)-env︷ ︸︸ ︷
Spaae

Fig. 2. Markov Random Field representation of our model at discrete
time step t. The top node represents the given task g, ga1, ga2. The second
layer from the top represents the sequence of primitives, and the layer below
represents the arguments associated with each primitive. And, the bottom
node represents the environment represented with set of attributes.

The terms associated with an edge in the graph are defined
as a linear function of its respective features φ and weights
w:

Sae = wae1
Tφae(a1,t, et) + wae2

Tφae(a2,t, et)

Spt = wpt
Tφpt(pt, g)

Similarly, the terms associated with a clique in the graph
are defined as a linear function of respective features φ and
weights w:
Saet = waet1

Tφaet(a1,t, et, g) + waet2
Tφaet(a2,t, et, g)

Spae = wpae1
Tφpae(pt, a1,t, et) + wpae2

Tφpae(pt, a2,t, et)

Sppt = wppt1
Tφppt(pt−1, pt, g) + wppt2

Tφptt(pt−2, pt, t)

Spaae =
∑

i,j∈(1,2),k∈(t−2,t−1)

wpaaeijk
Tφpaae(pt, ai,k, aj,t, et)

Using these edge and clique terms, our score func-
tion S can be simply written in the following form,
which we have seen in Program 3 with an extra
term g for the task: S(g(ga1, ga2), et, pt(a1,t, a2,t)) =
wTφ(g(ga1, ga2), et, pt(a1,t, a2,t)).

A. Features
In this section, we describe our features φ(·) for the

different terms in the previous section.
Arguments-environment (φae): The robot should be aware

of its location and the current level of its interaction with
objects (e.g., grasped), which are given as possible primitive
arguments a1,t, a2,t. Therefore, we add two binary features
which indicate whether each primitive argument is already
grasped and two features for the centroid distance from the
robot to each primitive arguments.

For capturing spatial relation between two objects a1,t and
a2,t, we add one binary feature indicating whether primitive
arguments a1,t, a2,t are currently in collision with each other.

Arguments-environment-task (φaet): To capture relations
between the objects of interest (task arguments) and objects
of possible interest (primitive arguments), we build a binary
vector of length 8. First four represents the indicator values of
whether the objects of interest are identical as the objects of
possible interest, and the last four represents spatial relation
of whether they overlap from top view.



It is important to realize the type of object that is below
the objects of interests, and the desired property (e.g., bowl-
like object or table-like object) may differ depending on the
situation. We create two feature vectors, each of length l.
If the robot is holding the object, we store its extracted
attributes in the first vector. Otherwise, we store them in the
second vector. If the primitive has two arguments, we use
the first primitive argument since it often has higher level of
interaction with the robot compared to the second argument.

Finally, to capture correlation between the high-level task
and the types of object in primitive argument, we take a
tensor product of two vectors: an attribute vector of length
2l for two objects and a binary occurrence vector of length
|T |. The matrix of size 2l × |T | is flattened to a vector.

Primitive-task (φpt): The set of primitives that are useful
may differ depending on the type of the task. We create a
|T |×|P| binary co-occurrence matrix between the task g and
the primitive pt that has a single non-zero entry in the current
task’s (gth) row and current primitive’s (ptth) column.

Primitive-arguments-environment (φpae): Some primitives
such as hold above require one of the objects in argu-
ments to be grasped or not to be grasped to execute correctly.
We create a |P| × 2 matrix where the row for the current
primitive (ptth row) contains two binary values indicating
whether each primitive argument is in the manipulator.

Primitive-primitive(previous)-task (φppt): The robot makes
different transitions between primitives for different tasks.
Thus, a binary co-occurrence matrix of size |T | × |P|2
represents transition occurrence between the primitives for
each task. In this matrix, we encode two transitions for the
current task g, from t− 2 to t and from t− 1 to t.

Primitive-arguments-arguments(previous)-environment
(φpaae): For a certain primitive in certain situations, the
arguments may not change between time steps. For example,
pour(A,B) would often be preceded by hold above
(A,B). Thus, the matrix of size |P|× 8 is created, with the
pt

th row containing 8 binary values representing whether
the two primitive arguments at time t are the same as the
two arguments at t− 1 or the two arguments at t− 2.

B. Attributes.

Every object in the environment including tables and the
floor is represented using the following set of attributes:
height h, max(width(w),length(l)), min(w, l), volume(w ∗
l ∗ h), min(w, l, h)-over-max(w, l, h), median(w, l, h)-over-
max(w, l, h), cylinder-shape, box-shape, liquid, container,
handle, movable, large-horizontal-surface, and multiple-
large-horizontal-surface. Attributes such as cylinder-shape,
box-shape, container, handle, and large-horizontal-surface
can be reliably extracted from RGB or RGBD images, and
were shown to be useful in several different applications
[7, 6, 22, 20]. We study the effects of attribute detection
errors on our model in Section V.

C. Learning

We use a max-margin approach to train a single model
for all tasks. This maximum margin approach fits our for-
mulation, since it assumes that the discriminant function is a

Fig. 3. Figure showing two of our 13 environments in our evaluation
dataset using 43 objects along with PR2 robot.

linear function of a weight vector w and a joint feature map
φ(g(ga1, ga2), et, pt(a1,t, a2,t)), and it has time complexity
linear with the number of training examples when solved us-
ing the cutting plane method [13]. We formalize our problem
as a “1-slack” structural SVM optimization problem:

min
w,ξ≥0

1

2
wTw +

C

l

n∑
i=1

li∑
t=1

ξit

s.t. for 1 ≤ i ≤ n, for each time step t : ∀p̂ ∈ P, ∀â1, â2 ∈ E :

wT [φ(gi(gia1, g
i
a2), eit, p

i
t(a

i
1,t, a

i
2,t))−φ(gi(gia1, g

i
a2), eit, p̂(â1, â2))]

≥ ∆({pit, ai1,t, ai2,t}, {p̂, â1, â2})− ξit
where n is the number of example sequences, li is the length
of the ith sequence, and l is the total length combining all
sequences. The loss function is defined as:
∆({p, a1, a2}, {p̂, â1, â2}) = 1(p 6= p̂)+1(a1 6= â1)+1(a2 6= â2)

With a learned w, we choose the next action in sequence
by selecting a pair of primitive and arguments that gives the
largest discriminant value:

argmax
pt∈P,a1,t,a2,t∈E

wTφ(g(ga1, ga2), et, pt(a1,t, a2,t))

V. EXPERIMENTS

Dataset. We considered seven primitives (low-level
controllers): move close (A), grasp (A), release
(A), place above (A,B), hold above (A,B),
follow traj circle (A) and follow traj pour
(A,B). Depending on the environment and the task, these
primitives could be instantiated with different arguments.
For example, consider an environment that contains a bottle
(obj04) containing liquid (obj16) and an empty cup (obj02)
placed on top of the shelf, among other objects. If, say from
a recipe, our task is to pour the liquid, then our program
should figure out the correct sequence of primitives with
correct arguments (based on the objects’ attributes, etc.):
{pour(obj16); env2} →
{move close(obj02); grasp(obj02); move close(obj04);

place above(obj02,obj26); release(obj02); grasp(obj04);

hold above(obj04,obj02); follow traj pour(obj04,obj02)}

Note that the actual sequence does not directly interact with
the liquid (obj16)—the only object specified by the task—
but rather with a container of liquid (obj04), an empty cup
(obj02), and a table (obj26), while none of these objects are
specified in the task arguments. As seen in this example, the
input for our planning problem is under-specified.

For evaluation, we prepared a dataset where the goal
was to produce correct sequences for the following tasks
in different environments:
• stir(A): Given a liquid A, the robot has to identify a

stirrer of ideal size (from several) and stir with it. The



TABLE I
RESULT OF BASELINES, OUR MODEL WITH VARIATIONS OF FEATURE SETS, AND OUR FULL MODEL ON OUR DATASET CONSISTING OF 127

SEQUENCES. THE “PRIM” COLUMNS REPRESENT PERCENTAGE OF PRIMITIVES CORRECTLY CHOSEN REGARDLESS OF ARGUMENTS, AND “ARGS”
COLUMNS REPRESENT PERCENTAGE OF A CORRECT PAIR OF PRIMITIVE AND ARGUMENTS. THE LAST COLUMN SHOWS AVERAGE PERCENTAGE OF

SEQUENCES CORRECT OVER THE FIVE PROGRAMS EVALUATED.

move close grasp release place above hold above traj circle traj pour Average Sequence
prim arg prim arg prim arg prim arg prim arg prim arg prim arg prim arg prim arg

chance 14.3 1.1 14.3 1.1 14.3 1.1 14.3 0.1 14.3 0.1 14.3 1.1 14.3 0.1 14.3 0.7 0 0
multiclass 99.6 - 90.4 - 95.7 - 68.5 - 79.7 - 100.0 - 14.7 - 78.4 - - -
symb-plan-svm 99.6 82.5 94.2 72.4 67.4 63.0 60.9 43.5 76.6 73.4 96.7 76.7 97.1 91.2 84.6 71.8 58.4 49.6
symb-plan-manual 99.6 85.4 94.2 76.3 67.4 63.0 60.9 50.0 76.6 76.6 96.7 96.7 97.1 97.1 84.6 77.9 58.4 54.9
Only edge features 23.5 15.3 56.4 45.5 93.5 93.5 0.0 0.0 18.8 9.4 100.0 100.0 50.0 44.1 48.9 44.0 0 0
Only clique features 99.6 1.9 96.8 82.7 90.2 90.2 72.8 15.2 87.5 15.6 96.7 96.7 100.0 97.1 91.9 57.0 45.0 0
Ours - full 99.3 82.8 96.8 84.0 97.8 97.8 89.1 79.3 96.9 92.2 100.0 100.0 97.1 94.1 96.7 90.0 91.6 69.7

liquid may be located on a tight shelf where it would
be dangerous to stir the liquid, and the robot should
always stir it on top of an open surface, like a table. The
robot should always only interact with the container of
the liquid, rather than the liquid itself, whenever liquid
needs to be carried or poured. Our learning algorithm
should learn such properties.

• pick and place(A,B): The robot has to place A on
top of B. If A is under some other object C, the object
C must first be moved before interacting with object A.

• pour(A): The robot has to identify a bowl-like object
without object labels and pour liquid A into it. Note
again that liquid A cannot be directly interacted with,
and it should not be poured on top of a shelf.

• pour to(A,B): The liquid A has to be poured into
the container B. (A variant of the previous task where
the container B is specified but the model should be
able to distinguish two different tasks.)

• throw away(A): The robot has to locate a garbage
can in the environment and throw out object A.

In order to learn these programs, we collected 127 se-
quences for 113 unique scenarios by presenting participants
the environment in simulation and the task to be done. We
considered a single-armed mobile manipulator robot for these
tasks. In order to extract information about the environment
at each time frame of every sequence, we implemented
each primitive using OpenRAVE simulator [5]. Though most
of the scenarios had a single optimal sequence, multiple
sequences were introduced when there were other acceptable
variations. The length of each sequence varies from 4 steps
to 10 steps, providing a total of 736 instances of primitives.
To ensure variety in sequences, sequences were generated
based on the 13 different environments shown in Figure 3,
using 43 objects each with unique attributes.
Baseline Algorithms. We compared our model against fol-
lowing baseline algorithms:

• chance: At each time step, a primitive and its arguments
are selected at random.

• multiclass: A multiclass SVM [13] was trained to pre-
dict primitives without arguments, since the set of pos-
sible arguments changes depending on the environment.

• symbolic-plan-svm: A PDDL-based symbolic planner
[36, 39] requires a domain and a problem definition.
Each scenario was translated to symbolic entities and
relations. However, the pre-conditions and effects of

each action in domain definition were hand-coded, and
each object was labeled with attributes using predicates.
Unlike our model that works on an under-specified
problem, each symbolic planning problem requires an
explicit goal state. In order to define these goal states,
we have trained ranking SVMs [12] in order to detect
a ‘stirrer’, an ‘object to pour into’ and a ‘garbage can’
for stir, pour, and throw away, respectively. Each
symbolic planning instance was then solved by reducing
to a satisfiability problem [16, 30].

• symbolic-plan-manual: Based on the same method as
symbolic-plan-svm, instead of training ranking SVMs,
we provided ground-truth goal states. Even after pro-
viding lots of hand-coded rules, it is still missing some
rules due to the difficulty of representation using PDDL
[36, 39], These missing rules include the fact that liquid
needs to be handled through its container and that
objects should not be manipulated on top of the shelf.

Evaluation and Results. We evaluated our algorithm
through 6-fold cross-validation, computing accuracies over
primitives, over primitives with arguments, and over the
full sequences. Figure 4(a) shows the confusion matrix for
prediction of our seven primitives. We see that our model is
quite robust for most primitives.

With our dataset, our model was able to correctly predict
pairs of primitives and arguments 90.0% of the time and full
sequences 69.7% of the time (Table I). Considering only the
primitives without arguments, it was able to predict primitive
96.7% of the time and full sequence 91.6% of the time. The
last column of Table I shows the performance with respect
to whether the complete sequence was correct or not. For
example, for “pouring”, our model has learned not only to
bring a cup over to the table, but also to pick out the cup
when there are multiple other objects like a pot, a bowl, or
a can that may have similar properties.

How do baselines perform for our under-specified plan-
ning problem? The results of various baseline algorithms
are shown in Table I. If the primitive and arguments pairs
are predicted at random, none of the sequences would be
correct because of the large search space of arguments. Mul-
ticlass predicted well for some of the primitives but suffered
greatly on primitives like place above, hold above and
follow traj pour, which drastically impacts construct-
ing overall sequences, even with correct arguments selected.

The symbolic planner based approaches, symbolic-plan-



(a) Confusion matrix for the seven primitives
in our dataset. Our dataset consist of 736 in-
stances of seven primitives in 127 sequences
on five manipulation tasks.

(b) Percentage of programs correct. Without
any feedback in completely autonomous mode,
the accuracy is 69.7%. With feedback (number of
feedbacks on x-axis), the performance increases.
This is on full 127 sequence dataset.

(c) Percentage of programs correct for 12
high-level tasks such as making sweet tea. In
completely autonomous mode, the accuracy is
75%. With feedback (number of feedbacks on
x-axis), the performance increases.

Fig. 4. Results with cross-validation. (a) On predicting the correct primitive individually. (b) On predicting programs, with and without user intervention.
(c) On performing different tasks with the predicted sequences.

svm and symbolic-plan-manual, suffered greatly from under-
specified nature of the problem. The planners predicted cor-
rectly 49.6% and 54.9% of the times, respectively, compared
to our model’s performance of 69.7%. Even though both
planners made use of heavily hand-coded domain definitions
of the problem, due to the nature of the language used by
symbolic planners, rules such as that liquid should not be
handled on top of shelves were not able to be encoded. Even
if the language were capable of encoding these rules, it would
require a human expert in planning language to carefully
encode every single rule the expert can come up with.

Also, by varying the set of features, it is evident that
without very robust primitive-level accuracies, the models
are unable to construct a single correct sequence.

How important is attribute representation of objects?
For 113 unique scenarios in our dataset, we have randomly
flipped binary attributes and observed the effects of detection
errors on correctness for the full sequence (Figure 6). When
there is no error in detecting attributes, our model performs at
69.7%. With 10% detection error, it performs at 55.8%, and
with 40% detection errors, it performs at 38.1%. Since the
attribute detection is more reliable than the object detection
[7, 6, 22], our model will perform better than planners based
on explicit object labels.

How can the robot utilize learned programs? These
learned programs can form higher level tasks such as mak-
ing a recipe found online. For example, serving sweet tea
would require the following steps: pouring tea into a cup,
pouring sugar into a cup, and stirring it (Figure 5). We have
tested each of the four tasks, serve-sweet-tea, serve-coffee-
with-milk, empty-container-and-throw-away, and serve-and-
store, in three environments. Each of the four tasks can be
sequenced in following manner by programs respectively:
pour→ pour to→ stir, pour to→ pour to, pour
→ throw away, and pour → pick and place. Out
of total 12 scenarios, our model was able to successfully
complete the task for 9 scenarios.

Does the robot need a human observer? In an assistive
robotics setting, a robot will be accompanied by a human
observer. With help from the human, performance can be
greatly improved. Instead of choosing a primitive and argu-
ment pair that maximizes the discriminant function, the robot

Fig. 6. Effect of attribute perception error. Figure showing percentage
of programs correct with attribute labeling errors for binary attributes. For
113 unique scenarios, binary attributes were randomly flipped.

can present the top 2 or 3 primitive and argument pairs to the
observer, who can simply give feedback on the best option
among those choices. At the initial time step of the sequence,
with only a single piece of feedback, given 2 or 3 choices,
performance improves to 74.1% and 75.6% respectively from
69.7% (Figure 4(b)). If feedback was provided through whole
sequence with the top 2 or 3 choices, it further improves to
76.7% and 81.4%. Furthermore, the four higher level tasks
(recipes) considered earlier also shows that with a single
feedback at the initial time step of each program, the results
improve from 75% to 100% (Figure 4(c)).

Robotic Experiments. Finally, we demonstrate that our
inferred programs can be successfully executed on our
Kodiak PR2 robot for a given task in an environment.
Using our implementation of the primitives discussed in
Section V, we show our robot performing the task of
“serving sweet tea.” It comprises executing three programs
in series – pour, pour to and stir – which in total
required sequence of 20 primitives with correct arguments.
Each of these programs (i.e., the sequence of primitives and
arguments) is inferred for this environment. Figure 5 shows
a few snapshots and the full video is available at:
http://pr.cs.cornell.edu/learningtasksequences

VI. CONCLUSION

In this paper, we considered the problem of learning
sequences of controllers for robots in unstructured human
environments. In an unstructured environment, even a simple
task such as pouring can take variety of different sequences
of controllers depending on the configuration of the envi-
ronment. We took a dynamic planning approach, where we



Fig. 5. Few snapshots of learned sequences forming the higher level task of serving sweet tea, which takes the sequence of pouring tea into a cup,
pouring sugar into a cup, and then stirring it.

represent the current state of the environment using a set of
attributes. To ensure that our dynamic plans are as general
and flexible as possible, we designed a score function that
captures relations between task, environment, primitives, and
their arguments, and we trained a set of parameters weighting
the various attributes from example sequences. By unrolling
the program, we can obtain a Markov Random Field style
representation, and use a maximum margin learning strategy.
We demonstrated on a series of example sequences that our
approach can effectively learn dynamic plans for various
complex high-level tasks.
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