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Abstract— A robot operating in a real-world environment
needs to perform reasoning over a variety of sensor modalities
such as vision, language and motion trajectories. However, it is
extremely challenging to manually design features relating such
disparate modalities. In this work, we introduce an algorithm
that learns to embed point-cloud, natural language, and manip-
ulation trajectory data into a shared embedding space with a
deep neural network. To learn semantically meaningful spaces
throughout our network, we use a loss-based margin to bring
embeddings of relevant pairs closer together while driving less-
relevant cases from different modalities further apart. We use
this both to pre-train its lower layers and fine-tune our final
embedding space, leading to a more robust representation. We
test our algorithm on the task of manipulating novel objects
and appliances based on prior experience with other objects.
On a large dataset, we achieve significant improvements in
both accuracy and inference time over the previous state of
the art. We also perform end-to-end experiments on a PR2
robot utilizing our learned embedding space.

I. INTRODUCTION

Consider a robot manipulating a new appliance in a home
kitchen, e.g. the toaster in Figure 3. The robot must use
the combination of its observations of the world and natural
language instructions to infer how to manipulate objects.
Such ability to fuse information from different input modal-
ities and map them to actions is extremely useful to many
applications of household robots [1], including assembling
furniture, cooking recipes, and many more.

Even though similar concepts might appear very differ-
ently in different sensor modalities, humans are able to
understand that they map to the same concept. For example,
when asked to “turn the knob counter-clockwise” on a
toaster, we are able to correlate the instruction language and
the appearance of a knob on a toaster with the motion to do
so. We also associate this concept more closely with a motion
which would incorrectly rotate in the opposite direction than
with, for example, the motion to press the toaster’s handle
downwards. There is strong evidence that humans are able
to correlate between different modalities through common
representations [2].

Obtaining a good common representation between differ-
ent modalities is challenging for two main reasons. First,
each modality might intrinsically have very different sta-
tistical properties — for example, here our trajectory rep-
resentation is inherently dense, while our representation of
language is naturally sparse. This makes it challenging to
apply algorithms designed for unimodal data. Second, even
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Fig. 1. Deep Multimodal Embedding: Our deep neural network learns
to embed both point-cloud/natural language instruction combinations and
manipulation trajectories in the same semantically meaningful space, where
distance represents the relevance of embedded data.

with expert knowledge, it is extremely challenging to design
joint features between such disparate modalities. Designing
features which map different sensor inputs and actions to the
same space, as required here, is particularly challenging.

In this work, we use a deep neural network to learn
a shared embedding between the pairing of object parts
in the environment with natural language instructions, and
manipulation trajectories (Figure 1). This means that all
three modalities are projected to the same feature space. We
introduce an algorithm that learns to pull semantically similar
environment/language pairs and their corresponding trajec-
tories to the same regions, and push environment/language
pairs away from irrelevant trajectories based on how irrel-
evant they are. Our algorithm allows for efficient inference
because, given a new instruction and point-cloud, we need
only find the nearest trajectory to the projection of this pair
in the learned embedding space, which can be done using
fast nearest-neighbor algorithms [3].

In the past, deep learning methods have shown impressive
results for learning features for a wide variety of domains
[4], [5], [6] and even learning cross-domain embeddings [7].
In contrast to these existing methods, here we present a new
pre-training algorithm for initializing networks to be used for
joint embedding of different modalities. Our algorithm trains
each layer to map similar cases to similar areas of its feature
space, as opposed to other methods which either perform
variational learning [8] or train for reconstruction [9].



In order to validate our approach, we test our model on
a large manipulation dataset, the Robobarista Dataset [1],
which focuses on learning to infer manipulation trajectories
for novel objects. We also present results on a series of
experiments on a PR2 robot, showing that our algorithm is
able to successfully manipulate several different objects. In
summary, the key contributions of this work are:

• We present an algorithm which learns a semantically
meaningful embedding space by enforcing a varying
and loss-based margin.

• We present an algorithm for unsupervised pre-training
of multi-modal features to be used for embedding which
outperforms standard pre-training algorithms [9].

• We present a novel approach to manipulation via em-
bedding multimodal data with deep neural networks.

• Our approach allows for fast inference of manipulation
trajectories for novel objects, roughly 170x faster than
previous work [1] while also improving accuracy on a
large manipulation dataset [1].

II. RELATED WORK

A. Metric Embedding
Several works in machine learning make use of the power

of shared embedding spaces. Large margin nearest neighbors
(LMNN) [10] learns a max-margin Mahalanobis distance for
a unimodal input feature space. [11] learn linear mappings
from image and language features to a common embedding
space for automatic image annotation. [12] learn to map
songs and natural language tags to a shared embedding
space. However, these approaches learn only a shallow,
linear mapping from input features, whereas here we learn
a deep non-linear mapping which is less sensitive to input
representations.

B. Deep Learning

Multimodal data: A deep neural network has been used to
learn features of video and audio [13]. With a generative
learning, a network can be robust to missing modalities
at inference time [14]. In these works, similar to [1], a
single network takes all modalities as inputs, whereas here
we perform joint embedding of multiple modalities using
multiple networks.

Joint embedding: Several works use deep networks for joint
embedding between different feature spaces. For translation,
a joint feature space is learned from different languages [15];
for annotation and retrieval, images and natural language
“tags” are mapped to the same space [7]. We present a new
pre-training algorithm for embedding spaces and show that it
outperforms the conventional methods used in these works.

A deep network is also used as metric learning for the
face verification task [16], which enforces a constant margin
between distances among inter-class objects and among
intra-class objects, similar to LMNN [10]. In Sec. VI-A, we
show that our approach, which uses a loss-dependent variable
margin, produces better results for our problem.

C. Robotic Manipulation
Many works in robotic manipulation focus on task-specific

manipulation with known objects — for example, folding
towels [17], baking cookies [18], or planar contact manipula-
tion [19]. Others [20], [21] focus on sequencing manipulation
tasks or choosing when to switch skills [22], assuming
manipulation primitives such as pour are available. For novel
objects, affordances are predicted and associated motions are
applied [23]. Instead, similar to [1], we skip intermediate
representations and directly generalize to novel objects.

A few recent works use deep learning approaches for
robotic manipulation. Deep networks have been used to
detect stable grasps from RGB-D data [24], [25]. [26] use a
Gaussian mixture model to learn system dynamics, then use
these to learn a manipulation policy using a deep network.
[27] use a deep network to learn system dynamics for real-
time model-predictive control. Both these works focus on
learning low-level input-output controllers. Here, we instead
focus on inferring full 6-DoF trajectories, which such con-
trollers could then be used to follow.

Sung et al. [1] perform object part-based transfer of
manipulation trajectories for novel objects and introduces
a large manipulation dataset including objects like epresso
machine and urinal. We primarily test our algorithm on this
dataset. In Sec. VI-A, we show that our approach gives better
accuracy than this prior work, while also running 171x faster.

III. OVERVIEW

The main challenge of our work is to learn a model
which maps three disparate modalities — point-clouds, nat-
ural language, and trajectories — to a single semantically
meaningful space. In particular, we focus on point-clouds
of object parts, natural language instructing manipulation of
different objects, and trajectories that would manipulate these
objects.

We introduce a method that learns a common point-
cloud/language/trajectory embedding space in which the pro-
jection of a task (point-cloud/language combination) should
have a higher similarity to projections of relevant trajectories
than task-irrelevant trajectories. Among these irrelevant tra-
jectories, some might be less relevant than others, and thus
should be pushed further away.

For example, given a door knob, that needs to be grasped
normal to the door surface, with an instruction to rotate it
clockwise, a trajectory that correctly approaches the door
knob but rotates counter-clockwise should have higher simi-
larity to the task than one which approaches the knob from a
completely incorrect angle and does not execute any rotation.

We learn non-linear embeddings using a deep learning ap-
proach, as shown in Fig. 1, which maps raw data from these
three different modalities to a joint embedding space. Prior
to learning a full joint embedding of all three modalities, we
pre-train embeddings of subsets of the modalities to learn
semantically meaningful embeddings for these modalities.

We show in Sec. V that a learned joint embedding space
can be efficiently used for finding an appropriate manipula-
tion trajectory for objects with natural language instructions.



A. Problem Formulation
Given tuples of a scene p ∈ P , a natural language

instruction l ∈ L and an end-effector trajectories t ∈ T , our
goal is to learn a joint embedding space and two different
mapping functions that map to this space—one from a point-
cloud/language pair and the other from a trajectory.

More formally, we want to learn ΦP,L(p, l) and ΦT (τ)
which map to a joint feature space RM :

ΦP,L(p, l) : (P,L)→ RM

ΦT (τ) : T → RM

The first, ΦP,L, which maps point-clouds and languages,
is defined as a combination of two mappings. The first of
these maps to a joint point-cloud/language space RN2,pl

— ΦP(p) : P → RN2,pl and ΦL(l) : L → RN2,pl .
N2,pl represents the size of dimensions p, l are embedded
jointly. Once each is mapped to RN2,pl , this space is then
mapped to the joint space shared with trajectory information:
ΦP,L(p, l) : ((P,L)→ RN2,pl)→ RM .

IV. LEARNING JOINT
POINT-CLOUD/LANGUAGE/TRAJECTORY MODEL

In our joint feature space, proximity between two mapped
points should reflect how relevant two data-points are to each
other, even if they are from completely different modalities.
We train our network to bring demonstrations that manipu-
late a given object according to some language instruction
closer to the mapped point for that object/instruction pair,
and to push away demonstrations that would not correctly
manipulate that object. Trajectories which have no semantic
relevance to the object are pushed much further away than
trajectories that have some relevance, even if the latter would
not fully manipulate the object according to the instruction.

For every training point-cloud/language pair (pi, li), we
have a set of demonstrations Ti and the most optimal demon-
stration trajectory τ∗i ∈ Ti. Using the optimal demonstration
τ∗i and a loss function ∆(τ, τ̄) for comparing demonstrations,
we find a set of trajectories Ti,S that are relevant (similar) to
this task and a set of trajectories Ti,D that are irrelevant
(dissimilar.) We use the DTW-MT distance function (de-
scribed later in Sec. VI) as our loss function ∆(τ, τ̄), but
it could be replaced by any function that computes the loss
of predicting τ̄ when τ is the correct demonstration. Using a
strategy previously used for handling noise in crowd-sourced
data [1], we can use thresholds (tS , tD) to generate two sets
from the pool of all trajectories:

Ti,S = {τ ∈ T |∆(τ∗i , τ) < tS}

Ti,D = {τ ∈ T |∆(τ∗i , τ) > tD}

For each pair of (pi, li), we want all projections of τj ∈
Ti,S to have higher similarity to the projection of (pi, li) than
τk ∈ Ti,D. A simple approach would be to train the network
to distinguish these two sets by enforcing a finite distance
(safety margin) between the similarities of these two sets
[10], which can be written in the form of a constraint:

sim(ΦP,L(pi, li),ΦT (τj)) ≥ 1+sim(ΦP,L(pi, li),ΦT (τk))
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Fig. 2. Pre-training lower layers: Visualization of our pre-training
approaches for h2,pl and h2,τ . For h2,pl, our algorithm pushes matching
point-clouds and instructions to be more similar. For h2,τ , our algorithm
pushes trajectories with higher DTW-MT similarity to be more similar.

Rather than simply being able to distinguish two sets, we
want to learn semantically meaningful embedding spaces
from different modalities. Recalling our earlier example
where one incorrect trajectory for manipulating a door knob
was much closer to correct than another, it is clear that our
learning algorithm should drive some incorrect trajectories to
be more dissimilar than others. The difference between the
similarities of τj and τk to the projected point-cloud/language
pair (pi, li) should be at least the loss ∆(τj , τk). This can
be written as a form of a constraint:

∀τj ∈ Ti,S ,∀τk ∈ Ti,D
sim(ΦP,L(pi, li),ΦT (τj))

≥ ∆(τj , τk) + sim(ΦP,L(pi, li),ΦT (τk))

Intuitively, this forces trajectories with higher DTW-MT
distance from the ground truth to embed further than those
with lower distance. Enforcing all combinations of these
constraints could grow exponentially large. Instead, similar
to the cutting plane method for structural support vector
machines [28], we find the most violating trajectory τ ′ ∈
Ti,D for each training pair of (pi, li, τi ∈ Ti,S) at each
iteration. The most violating trajectory has the highest value
after the similarity is augmented with the loss scaled by a
constant α:

τ ′i = arg max
τ∈Ti,D

(sim(ΦP,L(pi, li),ΦT (τ)) + α∆(τi, τ))

The cost of our deep embedding space h3 is computed as
the hinge loss of the most violating trajectory.

Lh3(pi, li, τi) = |∆(τi, τ
′
i)+sim(ΦP,L(pi, li),ΦT (τ ′i))

−sim(ΦP,L(pi, li),ΦT (τi))|+
The average cost of each minibatch is back-propagated

through all the layers of the deep neural network using the
AdaDelta [29] algorithm.

A. Pre-training Joint Point-cloud/Language Model

One major advantage of modern deep learning methods
is the use of unsupervised pre-training to initialize neural
network parameters to a good starting point before the final
supervised fine-tuning stage. Pre-training helps these high-
dimensional networks to avoid overfitting to the training data.

Our lower layers h2,pl and h2,τ represent features ex-
tracted exclusively from the combination of point-clouds
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Fig. 3. System Overview: Given a point-cloud and a language instruction, our goal is to output a trajectory that would manipulate the object according
to the instruction. The given point-cloud scene is segmented into many parts and ranked for each step of the instruction manual. By embedding point-cloud,
language, and trajectory modalities into a joint embedding space, our algorithm selects the best trajectory to transfer to the new object.

and language, and from trajectories, respectively. Our pre-
training method initializes h2,pl and h2,τ as semantically
meaningful embedding spaces similar to h3, as shown later
in Section VI-A.

First, we pre-train the layers leading up to these layers
using sparse de-noising autoencoders [30], [31]. Then, our
process for pre-training h2,pl is similar to our approach to
fine-tuning a semantically meaningful embedding space for
h3 presented above, except now we find the most violating
language l′ while still relying on a loss over the associated
optimal trajectory:

l′ = argmax
l∈L

(sim(ΦP(pi),ΦL(l)) + α∆(τi, τ))

Lh2,pl(pi, li, τi) = |∆(τi, τ
′)+sim(ΦP(pi),ΦL(l′))

−sim(ΦP(pi),ΦL(li))|+
Notice that although we are training this embedding space
to project from point-cloud/language data, we guide learning
using trajectory information.

After the projections ΦP and ΦL are tuned, the output of
these two projections are added to form the output of layer
h2,pl in the final feed-forward network.

B. Pre-training Trajectory Model

For our task of inferring manipulation trajectories for novel
objects, it is especially important that similar trajectories
τ map to similar regions in the feature space defined by
h2,τ , so that trajectory embedding h2,τ itself is semantically
meaningful and they can in turn be mapped to similar regions
in h3. Standard pretraining methods, such as sparse de-
noising autoencoder [30], [31] would only pre-train h2,τ to
reconstruct individual trajectories. Instead, we employ pre-
training similar to pre-training of h2,pl above, except now
we pre-train for only a single modality — trajectory data.

As shown on right hand side of Fig. 2, the layer that
embeds to h2,τ is duplicated. These layers are treated as
if they were two different modalities, but all their weights
are shared and updated simultaneously. For every trajectory
τ ∈ Ti,S , we can again find the most violating τ ′ ∈ Ti,D and
the minimize a similar cost function as we do for h2,pl.

V. APPLICATION: MANIPULATING NOVEL OBJECTS

As an example application, we consider manipulating
novel appliances [1]. Our goal is to use our learned em-
bedding space to allow the robot to infer a manipulation
trajectory when it is introduced to a new appliance with its
natural language instruction manual. For example, as shown
in Fig. 3, given a point-cloud of a scene with a toaster and
an instruction such as ‘Push down on the right lever to start
toasting,’ it should output a trajectory, representative of how
a two-fingered end-effector should move, including how to
approach, grasp, and push down on the lever. Our algorithm
allows the robot to leverage prior experience with different
appliances — for example, a trajectory which manipulates
the handles of a paper towel dispenser might be transferred
to manipulate the toaster handle.

First, in order to correctly identify a part p out of a scene
s that an instruction asks to manipulate, a point-cloud of a
scene s is segmented into many small potential candidates.
All segments are ranked for each step of the manual instruc-
tion. Multiple variations of correct segmentations and lots of
incorrect segmentation make our embedding representation
even more robust as shown later in Sec. VI-A.

Then, from a library of trajectories with prior experience,
the trajectory that gives the highest similarity to the selected
point-cloud p and language l in our embedding space RM :

argmax
τ∈T

sim(ΦP,L(p, l),ΦT (τ))

As in [11], similarity is defined as sim(a, b) = a · b.
The previous approach to this problem [1] requires pro-

jecting a new point-cloud and natural language instruction
with every trajectory in the training set exhaustively through
the network during inference.

Instead, our approach allows us to pre-embed all candidate
trajectories into a shared embedding space. The correct
trajectory can be identified by embedding only a new point-
cloud/language pair. As shown in Sec. VI-A, this signifi-
cantly improves both the inference run-time and accuracy
and makes it much more scalable to a larger training dataset.



A. Segmenting Object Parts from Point-clouds
Our learning algorithm (Sec. IV) assumes that object parts

p corresponding to each instruction l have already been
segmented from the point-cloud scene s. While our focus
is on learning to manipulate these segmented parts, we also
introduce a segmentation approach which allows us to both
build an end-to-end system and augment our training data
for better unsupervised learning, as shown in Sec. VI-A.

1) Generating Object Part Candidates: We employ a
series of geometric feature based techniques to segment a
scene s into small overlapping segments {p1, p2, ..., pn}. We
first extract Euclidean clusters of points while limiting the
difference of normals between a local and larger region [32],
[33]. We then filter out segments which are too big for human
hands. To handle a wide variety of object parts of different
scales, we generate two sets of candidates with two different
sets of parameters, which are combined for evaluation.

2) Part Candidate Ranking Algorithm: Given a set of
segmented parts p, we must now use our training data D
to select for each instruction lj the best-matching part p∗j .
We do so by optimizing the score ψ(pj , lj) of each segment
pi for a step lj in a manual, evaluated in three parts:

ψ(pi, lj ;D) = ψfeat(pi, lj)
(
ψpc(pi, lj) + ψlang(pi, lj)

)
The score ψpc is based on the kp-most identical segments

from the training data D, based on cosine similarity using
our grid representation (Sec. V-B). The score is a sum
of similarity against these segments and their associated
language: ψpc(pi, lj) =

∑n
k=1(sim(pi, pk) + β sim(lj , lk)).

If the associated language does not exist (i.e. pk is not a
manipulable part), it is given a set similarity value. Similarly,
the score ψlang is based on the kl-most identical language
instructions in D. It is a sum of similarity against identical
language and associated expert point-cloud segmentations.

The feature score ψfeat is computed by weighted features
wTφfeat(pi, lj) as described in Sec. V-A.3. Each score of
the segmented parts ψ(pi, lj) is then adjusted by multiplying
by ratio of its score against the marginalized score in the
manual: ψ̂(pi, lj) =

ψ(pi,lj)∑
lk∈mnew

ψ(pi,lk)
ψ(pi, lj). For each

lj ∈ mnew, an optimal segment of the scene chosen as the
segment with the maximum score: maxpi∈snew

ψ̂(pi, lj).
3) Features: Three features are computed for each seg-

ment in the context of the original scene. we first infer where
a person would stand by detecting the ‘front’ of the object, by
a plane segmentation constrained to have a normal axis less
than 45◦ from the line between the object’s centroid and the
original sensor location, assuming that the robot is introduced
close to the ‘front’. We then compute a ‘reach’ distance
from an imaginary person 170cm tall, which is defined as
the distance from the head of the person to each segment
subtracted by the distance of the closest one. Also, because
stitched point-clouds have significant noise near their edges,
we compute the distance from the imaginary view ray, a
line defined by the centroid of the scene to the head of the
person. Lastly, objects like a soda fountain a sauce dispenser
have many identical parts, making it difficult to disambiguate
different choices (e.g. Coke/Sprite, ketchup/mustard). Thus,

for such scenarios, we also provided a 3D point as if human
is pointing at the label of the desired selection. Note that
this does not point at the actual part but rather at its label or
vicinity. A distance from this point is also used as a feature.

B. Data Representation
All three data modalities (p, l, τ) are variable-length and

must be transformed into a fixed-length representation.
Each point-cloud segment is converted into a real-valued

3D occupancy grid where each cell’s value is proportional to
how many points fall into the cube it spans. We use a 100×
100× 100 grid of cubic cells with sides of 0.25cm. Unlike
our previous work [1], each cell count is also distributed
to the neighboring cells with an exponential distribution.
This smooths out missing points and increases the amount
of information represented. The grid then is normalized to
be between 0 ∼ 1 by dividing by the maximal count.

While our approach focuses on the shape of the part
in question, the shape of the nearby scene can also have
a significant effect on how the part is manipulated. To
account for this, we assign a value of 0.2 to any cell which
only contains points which belong to the scene but not the
specific part in question, but are within some distance from
the nearest point for the given part. To fill hollow parts
behind the background, such as tables and walls, we ray-
trace between the starting location of the sensor and cells
filled by background points and fill these similarly.

While our segment ranking algorithm uses the full-sized
grid for each segment, our main embedding algorithm uses
two compact grids generated by taking average of cells: 10×
10× 10 grids with cells with sides of 2.5cm and of 1cm.

Natural language l is represented by a fixed-size bag-of-
words. Trajectories are variable-length sequences of way-
points, where each waypoint contains a position, an orien-
tation and a gripper state (‘open’/‘closed’/‘holding’) defined
in the coordinate frame of object part. All trajectories τ are
then normalized to a fixed length of 15 waypoints. For more
details on trajectory representation, please refer to [1].

C. Robotic Platform
We tested our algorithms on a PR2, a mobile robot with

two arms with seven degrees of freedom each (Fig. 5). All
software for controlling the robot is written in ROS [34], and
the embedding algorithm are written with Theano [35]. All
of the computations are done on a remote computer utilizing
a GPU for our embedding model.

D. Parameters
Through validation, we found an optimal embedding space

size M of 25 and intermediate-layer sizes N1,p, N1,l, N1,τ ,
N2,pl, and N2,τ of 250, 150, 100, 125, and 100 with the loss
scaled by α = 0.2. These relatively small layer sizes also had
the advantage of fast inference, as shown in Sec. VI-A.

VI. EXPERIMENTS

In this section, we present two sets of experiments. First,
we show offline experiments on the Robobarista dataset [1]
which test individual components of our system, showing



TABLE I
RESULT ON ROBOBARISTA DATASET WITH 5-fold cross-validation.

ROWS LIST MODELS WE TESTED INCLUDING OUR MODEL AND

BASELINES. EACH COLUMN SHOWS A DIFFERENT METRIC USED TO

EVALUATE THE MODELS. FOR THE DTW-MT METRIC, LOWER VALUES

ARE BETTER. FOR ACCURACY, HIGHER IS BETTER.

per manual per instruction
Models DTW-MT DTW-MT Accu. (%)
chance 28.0 (±0.8) 27.8 (±0.6) 11.2 (±1.0)

object part classifier [1] - 22.9 (±2.2) 23.3 (±5.1)
LSSVM + kinematic [1] 17.4 (±0.9) 17.5 (±1.6) 40.8 (±2.5)
similarity + weights [1] 13.3 (±1.2) 12.5 (±1.2) 53.7 (±5.8)

Sung et al. [1] 13.0 (±1.3) 12.2 (±1.1) 60.0 (±5.1)
LMNN-like cost [10] 15.4 (±1.8) 14.7 (±1.6) 55.5 (±5.3)
Ours w/o pretraining 13.2 (±1.4) 12.4 (±1.0) 54.2 (±6.0)

Ours with SDA 11.5 (±0.6) 11.1 (±0.6) 62.6 (±5.8)
Ours w/o Mult. Seg 11.0 (±0.8) 10.5 (±0.7) 65.1 (±4.9)

Our Model 10.3 (±0.8) 9.9 (±0.5) 68.4 (±5.2)

improvements for each. Second, we present a series of real-
world robotic experiments which show that our system is
able to produce trajectories that can successfully manipulate
objects based on natural language instructions.
Dataset. We test our model on the Robobarista dataset [1].
This dataset consists of 115 point-cloud scenes with 154
manuals, consisting of 249 expert segmented point-clouds
and 250 free-form natural language instructions. It also
contains 1225 crowd-sourced manipulation trajectories which
are demonstrated for 250 point-cloud/language pairs. The
point-clouds are collected by stitching multiple views using
Kinect Fusion. The manipulation trajectories are collected
from 71 non-experts on Amazon Mechanical Turk.
Evaluation. All algorithms are evaluated using five-fold
cross-validation, with 10% of the data kept out as a valida-
tion set. For each point-cloud/language pair in test set of each
fold, each algorithm chooses one trajectory from the training
set which best suits this pair. Since our focus is on testing
ability to reason about different modalities and transfer
trajectory, segmented parts are provided as input. To evaluate
transferred trajectories, the dataset contains a separate expert
demonstration for each point-cloud/language pair, which is
not used in the training phase [1]. Every transferred trajectory
is evaluated against these expert demonstrations.
Metrics. For evaluation of trajectories, we use dynamic time
warping for manipulation trajectories (DTW-MT) [1], which
non-linearly warps two trajectories of different lengths while
preserving weak ordering of matched trajectory waypoints.
Since its values are not intuitive, [1] also reports the percent-
age of transferred trajectories that have a DTW-MT value of
less than 10 from the ground-truth trajectory, which indicates
that it will most likely correctly manipulate according to the
given instruction according to an expert survey.

We report three metrics: DTW-MT per manual, DTW-MT
per instruction, and Accuracy (DTW-MT < 10) per instruc-
tion. Instruction here refers to every point-cloud/language
pair, and manual refers to list of instructions which comprises
a set of sequential tasks, which we average over.
Baselines. We compare our model against several baselines:

1) Chance: Trajectories are randomly transferred.
2) Sung et al. [1]: State-of-the-art result on this dataset
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Fig. 4. Accuracy-threshold graph showing results of varying thresholds
on DTW-MT measures. Our algorithm consistently outperforms the previous
approach [1] and an LMNN-like cost function [10].

that trains a neural network to predict how likely each known
trajectory matches a given point-cloud and language.

We also report several baselines from this work which rely
on more traditional approaches such as classifying point-
clouds into labels like ‘handle’ and ‘lever’ (object part
classifier), or hand-designing features for multi-modal data
(LSSVM + kinematic structure, task similarity + weighting).

3) LMNN [10]-like cost function: For both fine-tuning
and pre-training, we define the cost function without loss
augmentation. Similar to LMNN [10], we give a finite margin
between similarities. For example, as cost function for h3:
|1 + sim(ΦP,L(pi, li),ΦT (τ ′))− sim(ΦP,L(pi, li),ΦT (τi))|+

4) Our Model without Pretraining: Our full model fine-
tuned without any pre-training of lower layers.

5) Our Model with SDA: Instead of pre-training h2,pl and
h2,τ as defined in Secs. IV-A and IV-B, we pre-train each
layer as stacked de-noising autoencoders [30], [31].

6) Our Model without Multiple Segmentations: Our model
trained only with expert segmentations, without taking uti-
lizing all candidate segmentations in auto-encoders and mul-
tiple correct segmentations of the same part during training.

A. Results
We present the results of our algorithm and the baseline

approaches in Table I. Additionally, Fig. 4 shows accuracies
obtained by varying the threshold on the DTW-MT measure.

The state-of-the-art result [1] on this dataset has a DTW-
MT measure of 13.0 per manual and a DTW-MT measure
and accuracy of 12.2 and 60.0% per instruction. Our full
model based on joint embedding of multimodal data achieved
10.3, 9.9, and 68.4%, respectively. This means that when a
robot encounters a new object it has never seen before, our
model gives a trajectory which would correctly manipulate
it according to a given instruction approximately 68.4%
of the time. From Fig. 4, we can see that our algorithm
consistently outperforms both prior work and an LMNN-like
cost function for all thresholds on the DTW-MT metric.

What does our learned deep embedding space rep-
resent? Fig. 6 shows a visualization of the top layer h3,
the joint embedding space. This visualization is created by
projecting all training data (point-cloud/language pairs and
trajectories) of one of the cross-validation folds to h3, then
embedding them to 2-dimensional space using t-SNE [36].

One interesting result is that our system was able to
naturally learn that “nozzle” and “spout” are effectively



Fig. 5. Robotic Experiments: We test our algorithm on a PR2 robot with
three different novel objects — coffee dispenser handle, beverage dispenser
lever, and door handle.

synonyms for purposes of manipulation. It clustered these
together in the upper-left of Fig. 6 based solely on the fact
that both are associated with similar point-cloud shapes and
manipulation trajectories.

In addition to the aforementioned cluster, we see several
other logical clusters. Importantly, we can see that our em-
bedding maps vertical and horizontal rotation operations to
very different regions of the space — roughly 2 o’clock and 8
o’clock in Fig. 6, respectively. Despite the fact that these have
nearly identical language instructions, our algorithm learns
to map them differently based on their point-clouds, mapping
nearby the appropriate manipulation trajectories.

Should the cost function be loss-augmented? When
we change the cost function for pre-training h2 and fine-
tuning h3 to use a constant margin of 1 between relevant
Ti,S and irrelvant Ti,D demonstrations [10], performance
drops to 55.5%. This loss-augmentation is also visible in
our embedding space. Notice the purple cluster around the
12 o’clock region of Fig. 6, and the right portion of the red
cluster in the 11 o’clock region. The purple cluster represents
tasks and demonstrations related to pushing a bar, and the
lower part of the red cluster represents the task of holding a
cup below the nozzle. Although the motion required for one
task would not be replaceable by the other, the motions and
shapes are very similar, especially compared to most other
motions e.g. turning a horizontal knob.

Is pre-embedding important? As seen in Table I, with-
out any pre-training our model gives an accuracy of only
54.2%. Pre-training the lower layers with the conventional
stacked de-noising auto-encoder (SDA) algorithm [30], [31]
increases performance to 62.6%, still significantly underper-
forming our pre-training algorithm, at 68.4%. This shows
that our metric embedding pre-training approach provides a
better initialization for an embedding space than SDA.

Can automatically segmented object parts be manipu-
lated? From Table II, we see that our segmentation approach
was able to find a good segmentation for the object parts in
question in 50 of 60 robotic trials (Sec. VI-B), or 83.3% of
the time. Most failures occurred for the beverage dispenser,
which had a small lever that was difficult to segment.

When our full DME model utilizes two variations of same
part and uses all candidates as a training data for the auto-
encoder, our model performs at 68.4% compared to 65.1%
which only used expert segmentations.

Does embedding improve efficiency? While [1] has
749, 638 parameters to be learned, our model only has
616, 175 (and still gives better performance.)

The previous model had to compute joint point-

TABLE II
RESULTS OF 60 EXPERIMENTS ON A PR2 ROBOT RUNNING END-TO-END

EXPERIMENTS AUTONOMOUSLY ON THREE DIFFERENT OBJECTS.
Success Rate Dispenser Beverage Door
of Each Step Handle Lever Handle Avg.

1) Segmentation 90.0% 65.0% 95.0% 83.3%
2) DME Traj. Inference 94.4% 100.0% 78.9% 91.1%

3) Execution of Traj. 82.4% 76.9% 100.0% 86.4%

cloud/language/trajectory features for all combinations of
the current point-cloud/language pair with each candidate
trajectory (i.e. all trajectories in the training set) to infer
an optimal trajectory. This is inefficient and does not scale
well with the number of training datapoints. However, our
model pre-computes the projection of all trajectories into h3.
Inference in our model then requires only projecting the new
point-cloud/language combination to h3 once and finding the
trajectory with maximal similarity in this embedding.

In practice, this results in a significant improvement in
efficiency, decreasing the average time to infer a trajectory
from 2.3206ms to 0.0135ms, a speed-up of about 171x. Time
was measured on the same hardware, with a GPU (GeForce
GTX Titan X), using Theano [35]. We measured inference
times 10000 times for first test fold, which has a pool of 962
trajectories. Times to preprocess the data and load into GPU
memory were not included in this measurement.
B. Robotic Experiments

To test our framework, we performed 60 experiments on
a PR2 robot in three different scenes shown in Fig. 5. We
presented the robot with the object placed within reach from
different starting locations along with a language instruction.

Table II shows results of our robotic experiments. It
was able to successfully complete the task end-to-end au-
tonomously 39 times. Segmentation was not as reliable for
the beverage dispenser which has a small lever. However,
when segmentation was successful, our embedding algorithm
was able to provide a correct trajectory with an accuracy
of 91.1%. Our PR2 was then able to correctly follow these
trajectories with a few occasional slips due to the relatively
large size of its hand compared to the objects.

Video of robotic experiments are available at this website:
http://www.robobarista.org/dme/

VII. CONCLUSION

In this work, we introduce an algorithm that learns a
semantically meaningful common embedding space for three
modalities — point-cloud, natural language and trajectory.
Using a loss-augmented cost function, we learn to embed in a
joint space such that similarity of any two points in the space
reflects how relevant to each other. As one of application,
we test our algorithm on the problem of manipulating novel
objects. We empirically show on a large dataset that our
embedding-based approach significantly improve accuracy,
despite having less number of learned parameters and being
much more computationally efficient (about 171x faster) than
the state-of-the-art result. We also show via series of robotic
experiments that our segmentation algorithm and embedding
algorithm allows robot to autonomously perform the task.
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Turn handle 
counterclock
wise to mix 
in hot water. 

Rotate the 
speaker 
knob 
clockwise 
until it clicks. 

Rotate the 
Heart to 
Heart knob 
clockwise to 
dispense. 

To unlock the 
door, rotate 
the lock 
clockwise. 

Push the 
button to 
fill the cup. 

Press the 
button to 
turn the 
range hood 
on. 

Hold the 
bowl below 
the Colossal 
Crunch 
nozzle. 

Hold the 
cup below 
the nozzle 
on the left. 

Hold the milk pitcher 
under the froth 
wand and submerge 
the nozzle of the 
wand into the milk. 

Push on 
the bar to 
fill the cup 
with ice. 

Pull down on 
the right 
dispenser's 
lever to fill 
the cup. 

Fig. 6. Learned Deep Point-cloud/Language/Trajectory Embedding Space: Joint embedding space h3 after the network is fully fine-tuned, visualized
in 2d using t-SNE [36] . Inverted triangles represent projected point-cloud/language pairs, circles represent projected trajectories. The occupancy grid
representation (Sec. V-B) of object part point-clouds is shown in green in blue grids. For presentation purpose, ‘neighbor’ cells are not shown. The legend
at the bottom right shows classifications of object parts by an expert, collected for the purpose of building a baseline. As shown by result of this baseline
(object part classifier in Table I), these labels do not necessarily correlate well with the actual manipulation motion. Thus, full separation according to the
labels defined in the legend is not optimal and will not occur. These figures are best viewed in color.
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